Server-Efficient High-Definition Media Dissemination

Philip W. Frey 1), Andreas Hasler 1), Bernard Metzler 1) and Gustavo Alonso 2)

1) Systems Department | IBM Research GmbH
2) Systems Group | Department of Computer Science | ETH Zurich

June 16, 2009
Media Consumption Trends

- **Personalized & interactive services**
 - Unicast
 - Video-on-Demand

- **High-Definition Media**
 - Significantly higher bit rates
 - Widespread flat rate broadband Internet access

[1] V. Saxena (Comcast Cable): Bandwidth drivers for 100 G Ethernet
So what is the Issue?

- **Orthogonal service requirements**
 - Throughput & latency

- **Challenges for the service providers: many users!**
 - High aggregate data throughput
 - Unpredictable user behavior

- **Most prevalent solutions fail to fully utilize available link bandwidth!**
 - **Network** is no longer bottleneck
 - Significant **I/O overhead** on server machines
 (intermediate **data copying**)
Our proposal

- **Goal:** Fully utilize 10GbE link with minimal server I/O cost
 - Serve HD media to **maximum number of clients**
 - Offer convenient **on-demand** service
 - Utilize even **faster** links in the future

- **Data transfer using** Remote Direct Memory Access (**RDMA**)
 - Minimal I/O overhead (CPU & memory bus)
 - Client-driven protocol
 - Minimal **control** overhead
Overview

- **Prominent Solutions**
 - RTP over UDP
 - HTTP over TCP

- **Reducing the I/O Overhead - RDMA Transport**
 - Background & Technology Overview
 - iWARP/RDMA-based Media Dissemination Protocol

- **Server Scalability**
 - Host overhead
 - VCR-like Media Control

- **Summary & Outlook**
Testbed

- **Network**
 - 10 Gb/s Ethernet

- **Machines**
 - IBM HS21 BladeServers (Quad Core 2.33GHz Intel Xeon, 8GB memory)
 - Linux 2.6.27 (Fedora Core 9)

- **Codec**
 - H.264
 - Bit rates: ~1 Mbps (SD) … ~9 Mbps (Full HD)

- **Server software**
 - RTP: VLC media player, Apple Darwin Streaming Server
 - HTTP: Apache web server
Prominent Solution 1 - RTP over UDP

- **UDP + RTP + RTCP + RTSP**
 - Unidirectional transport
 - Feedback channel
 - Out-of-band session control

- **Overhead**
 - Data copying
 - Packetizing
 -> **CPU & memory bus** load!

Only ~15% link utilization due to excessive server I/O overhead!
Prominent Solution 2 - HTTP over TCP

- **TCP + HTTP**
 - Bidirectional (Sockets)
 - Not designed for VoD

- **Potential Advantages**
 - Standard software
 - Firewall (port 80)

- **Overhead**
 - Data copying
 - \(~ 70\%\) link utilization
 - \(\rightarrow\) Sendfile: \(100\%\) link utilization!
User Interactivity

- **Sendfile**
 - Part of mainline Linux kernel
 - Utilize 10GbE link capacity
 - Data from HDD
 - Depending on user interactivity
 - Stateful server
 - Zero-copy only on TX side
Overview

- Prominent Solutions
 - RTP over UDP
 - HTTP over TCP

- Reducing the I/O Overhead - RDMA Transport
 - Background & Technology Overview
 - iWARP/RDMA-based Media Dissemination Protocol

- Server Scalability
 - Host overhead
 - VCR-like Media Control

- Summary & Outlook
Reducing the I/O Overhead - RDMA Transport

- Semantic Benefits
 - Direct access to main memory of remote host
 - One-sided operations
 - Asynchronous interface

- Performance Benefits
 - Zero-Copy & Kernel Bypassing
 - Minimal CPU & memory bus load
 - HW accelerated (RNIC)
 - iWARP = RDMA over Ethernet
RDMA Operations during Data Exchange

Local Process

...
\texttt{wait(src = D, dst = D)}
\texttt{send(src = S)}
...

Remote Process

...
\texttt{receive(dst = D)}
...

Network
iWARP/RDMA-based Media Dissemination Protocol

- **Buffer advertisement**

- **Client reads from server**
 - Pull-based
 - One-sided RDMA Read operation
 - True remote random access

- **VCR-like media control**
 - Play, pause, skip, change media, etc.
 - In-band (no control channel)
 - ‘Stateless’ server
Overview

- **Prominent Solutions**
 - RTP over UDP
 - HTTP over TCP

- **Reducing the I/O Overhead - RDMA Transport**
 - Background & Technology Overview
 - iWARP/RDMA-based Media Dissemination Protocol

- **Server Scalability**
 - Host overhead
 - VCR-like Media Control

- **Summary & Outlook**
iWARP/RDMA Server Scalability

- **Parameters**
 - Bit rate
 - Seek rate
 - Number of different movies
 - Movie length (min)
 - Client buffer size

- **Excellent scalability**
 - Utilize full 10GbE
 - Minimal overhead
 - Maximum number of clients
Overview

- **Prominent Solutions**
 - RTP over UDP
 - HTTP over TCP

- **Reducing the I/O Overhead - RDMA Transport**
 - Background & Technology Overview
 - iWARP/RDMA-based Media Dissemination Protocol

- **Server Scalability**
 - Host overhead
 - VCR-like Media Control

- **Summary & Outlook**
iWARP-based Media Dissemination - Summary

✓ Scalable
 ✓ Maximum copy avoidance
 ✓ Minimal memory bus load
 ✓ Minimal state on server

✓ True remote random access
 ✓ Responsive and efficient VCR-like media control (for free)
 ✓ In-bound media control

✓ Easy to apply (~300 LOC)

✗ Special RDMA NIC to get full performance ($800)
✗ Data must reside in main memory

⇒ Minimal server overhead ➔ Maximum #clients

© 2009 IBM Corporation
Outlook & Future Work

- **Local buffer replacement strategies**
 - Local pyramid broadcast

- **Software iWARP stack on clients**

- **Extension to Live Streaming**
 - Special case of VoD
 - Push-based protocol using RDMA write
 - Update protocol

- **P2P Overlay (?)**
Take Home Message

- **HD media dissemination poses challenge to server infrastructure**
 - High aggregate throughput
 - Dynamic and unpredictable user interaction
 - **Massive I/O overhead!**

- **UDP no longer the obvious choice**

- **RDMA offers significant server I/O reduction**
 - Scalability: HW acceleration, copy avoidance
 - VCR-like control: One-sided, asynchronous operations